A General Asymptotic Theory for Time Series Models
Shiqing Ling () and
Michael McAleer
No CIRJE-F-670, CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo
Abstract:
This paper develops a general asymptotic theory for the estimation of strictly stationary and ergodic time series models. Under simple conditions that are straightforward to check, we establish the strong consistency, the rate of strong convergence and the asymptotic normality of a general class of estimators that includes LSE, MLE, and some M-type estimators. As an application, we verify the assumptions for the long-memory fractional ARIMA model. Other examples include the GARCH(1,1) model, random coefficient AR(1) model and the threshold MA(1) model.
Pages: 17pages
Date: 2009-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf670.pdf (application/pdf)
Related works:
Journal Article: A general asymptotic theory for time‐series models (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tky:fseres:2009cf670
Access Statistics for this paper
More papers in CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by CIRJE administrative office ().