FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse optimisation on Measures
Sébastien Gadat,
Yohann De Castro and
Clément Marteau
No 23-1494, TSE Working Papers from Toulouse School of Economics (TSE)
Abstract:
This paper presents a novel algorithm that leverages Stochastic Gradient Descent strategies in con-junction with Random Features to augment the scalability of Conic Particle Gradient Descent (CPGD) specifically tailored for solving sparse optimisation problems on measures. By formulating the CPGD steps within a variational framework, we provide rigorous mathematical proofs demonstrating the fol-lowing key findings: (i) The total variation norms of the solution measures along the descent trajectory remain bounded, ensuring stability and preventing undesirable divergence; (ii) We establish a global convergence guarantee with a convergence rate of O(log(K)/√K) over K iterations, showcasing the efficiency and effectiveness of our algorithm, (iii) Additionally, we analyze and establish local control over the first-order condition discrepancy, contributing to a deeper understanding of the algorithm’s behavior and reliability in practical applications.
Date: 2023-12-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2023/wp_tse_1494.pdf Full Text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:128771
Access Statistics for this paper
More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().