Privately Learning Smooth Distributions on the Hypercube by Projections
Clément Lalanne and
Sébastien Gadat
No 24-1505, TSE Working Papers from Toulouse School of Economics (TSE)
Abstract:
Fueled by the ever-increasing need for statistics that guarantee the privacy of their training sets, this article studies the centrally-private estimation of Sobolev-smooth densities of probability over the hypercube in dimension d. The contributions of this article are two-fold : firstly, it generalizes the one-dimensional results of (Lalanne et al., 2023b) to non-integer levels of smoothness and to a high-dimensional setting, which is important for two reasons : it is more suited for modern learning tasks, and it allows understanding the relations between privacy, dimensionality and smoothness, which is a central question with differential privacy. Secondly, this article presents a private strategy of estimation that is data-driven (usually referred to as adaptive in Statistics) in order to privately choose an estimator that achieves a good bias-variance trade-off among a finite family of private projection estimators without prior knowledge of the ground-truth smoothness β. This is achieved by adapting the Lepskii method for private selection, by adding a new penalization term that makes the estimation privacy-aware.
Date: 2024-02
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2024/wp_tse_1505.pdf Full Text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:129117
Access Statistics for this paper
More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().