EconPapers    
Economics at your fingertips  
 

Privately Learning Smooth Distributions on the Hypercube by Projections

Clément Lalanne and Sébastien Gadat

No 24-1505, TSE Working Papers from Toulouse School of Economics (TSE)

Abstract: Fueled by the ever-increasing need for statistics that guarantee the privacy of their training sets, this article studies the centrally-private estimation of Sobolev-smooth densities of probability over the hypercube in dimension d. The contributions of this article are two-fold : firstly, it generalizes the one-dimensional results of (Lalanne et al., 2023b) to non-integer levels of smoothness and to a high-dimensional setting, which is important for two reasons : it is more suited for modern learning tasks, and it allows understanding the relations between privacy, dimensionality and smoothness, which is a central question with differential privacy. Secondly, this article presents a private strategy of estimation that is data-driven (usually referred to as adaptive in Statistics) in order to privately choose an estimator that achieves a good bias-variance trade-off among a finite family of private projection estimators without prior knowledge of the ground-truth smoothness β. This is achieved by adapting the Lepskii method for private selection, by adding a new penalization term that makes the estimation privacy-aware.

Date: 2024-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2024/wp_tse_1505.pdf Full Text (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:129117

Access Statistics for this paper

More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-04-19
Handle: RePEc:tse:wpaper:129117