# Measuring Firm Performance using Nonparametric Quantile-type Distances

*Abdelaati Daouia* (),
*Leopold Simar* () and
*Paul Wilson* ()

No 13-412, TSE Working Papers from Toulouse School of Economics (TSE)

**Abstract:**
When faced with multiple inputs X ∈ Rp + and outputs Y ∈ Rq +, traditional quantile regression of Y conditional on X = x for measuring economic efficiency in the output (input) direction is thwarted by the absence of a natural ordering of Euclidean space for dimensions q (p) greater than one. Daouia and Simar (2007) used nonstandard conditional quantiles to address this problem, conditioning on Y ≥ y (X ≤ x) in the output (input) orientation, but the resulting quantiles depend on the a priori chosen direction. This paper uses a dimensionless transformation of the (p + q)-dimensional production process to develop an alternative formulation of distance from a realization of (X, Y ) to the efficient support boundary, motivating a new, unconditional quantile frontier lying inside the joint support of (X, Y ), but near the full, efficient frontier. The interpretation is analogous to univariate quantiles and corrects some of the dis- appointing properties of the conditional quantile-based approach. By contrast with the latter, our approach determines a unique partial-quantile frontier independent of the chosen orientation (input, output, hyperbolic or directional distance). We prove that both the resulting efficiency score and its estimator share desirable monotonic- ity properties. Simple arguments from extreme-value theory are used to derive the asymptotic distributional properties of the corresponding empirical efficiency scores (both full and partial). The usefulness of the quantile-type estimator is shown from an infinitesimal and global robustness theory viewpoints via a comparison with the previous conditional quantile-based approach. A diagnostic tool is developed to find the appropriate quantile-order; in the literature to date, this trimming order has been fixed a priori. The methodology is used to analyze the performance of U.S. credit unions, where outliers are likely to affect traditional approaches.

**New Economics Papers:** this item is included in nep-ecm and nep-eff

**Date:** 2013-03, Revised 2013-11

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** View citations in EconPapers (2) Track citations by RSS feed

**Downloads:** (external link)

http://www.tse-fr.eu/sites/default/files/medias/doc/wp/etrie/wp_tse_412_v2.pdf Full text (application/pdf)

**Related works:**

Journal Article: Measuring firm performance using nonparametric quantile-type distances (2017)

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:tse:wpaper:27253

Access Statistics for this paper

More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.

Bibliographic data for series maintained by ().