Calculating ultimate non-ruin probabilities when claim sizes follow a generalized r-convolution distribution function
Miguel Arturo Usábel Rodrigo
Additional contact information
Miguel Arturo Usábel Rodrigo: Facultad de Ciencias Económicas y Empresariales. Universidad Complutense de Madrid.
No 98-02, Documentos de trabajo de la Facultad de Ciencias Económicas y Empresariales from Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales
Abstract:
The non-ruin probability, for initial reserves u, in the classical can be calculated using the so-called Bromwich-Mellin inversion formula, an outstanding result from Residues Theory first introduced for these purposes by Seal(1977) for exponential claim size. We will use this technique when claim sizes follow a generalized r-convolution function distribution. Some of the most frequently used heavy-tailed distributions in actuarial science belongs to this family. Thorin(1977) or Berg(1981) proved that Pareto distributions are members of this family; so Thorin(1977) did with Log-normal distributions.
Keywords: Ultimate non-ruin probability; Laplace transforms; Bromwich-Mellin inversion formula; Gerenalized r-convolution functions. (search for similar items in EconPapers)
Pages: 8 pages
Date: 1998
References: Add references at CitEc
Citations:
Downloads: (external link)
https://eprints.ucm.es/id/eprint/27083/1/9802.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ucm:doctra:98-02
Ordering information: This working paper can be ordered from
Facultad de Ciencias Económicas y Empresariales. Campus de Somosaguas, 28223 - POZUELO DE ALARCÓN (MADRID)
https://economicasye ... /working-papers-ccee
Access Statistics for this paper
More papers in Documentos de trabajo de la Facultad de Ciencias Económicas y Empresariales from Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales Contact information at EDIRC.
Bibliographic data for series maintained by Águeda González Abad ().