A Generalized Email Classification System for Workflow Analysis
Piyanuch Chaipornkaew,
Takorn Prexawanprasut,
Chia-Lin Chang () and
Michael McAleer
Additional contact information
Piyanuch Chaipornkaew: College of Innovative Technology and Engineering Dhurakij Pundit UniversityBangkok, Thailand.
Takorn Prexawanprasut: College of Innovative Technology and Engineering Dhurakij Pundit University Bangkok, Thailand.
No 2017-21, Documentos de Trabajo del ICAE from Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico
Abstract:
One of the most powerful internet communication channels is email. As employees and their clients communicate primarily via email, much crucial business data is conveyed via email content. Where businesses are understandably concerned, they need a sophisticated workflow management system to manage their transactions. A workflow management system should also be able to classify any incoming emails into suitable categories. Previous research has implemented a system to categorize emails based on the words found in email messages. Two parameters affected the accuracy of the program, namely the number of words in a database compared with sample emails, and an acceptable percentage for classifying emails. As the volume of email has become larger and more sophisticated, this research classifies email messages into a larger number of categories and changes a parameter that affects the accuracy of the program. The first parameter, namely the number of words in a database compared with sample emails, remains unchanged, while the second parameter is changed from an acceptable percentage to the number of matching words. The empirical results suggest that the number of words in a database compared with sample emails is 11, and the number of matching words to categorize emails is 7. When these settings are applied to categorize 12,465 emails, the accuracy of this experiment is approximately 65.3%. The optimal number of words that yields high accuracy levels lies between 11 and 13, while the number of matching words lies between 6 and 8.
Keywords: Email; business data; workflow management system; business transactions. (search for similar items in EconPapers)
JEL-codes: J24 O31 O32 O33 (search for similar items in EconPapers)
Pages: 21 pages
Date: 2017-07
New Economics Papers: this item is included in nep-ict and nep-sea
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://eprints.ucm.es/id/eprint/44630/1/1721.pdf (application/pdf)
Related works:
Working Paper: A Generalized Email Classification System for Workflow Analysis (2017) 
Working Paper: A Generalized Email Classification System for Workflow Analysis (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ucm:doicae:1721
Ordering information: This working paper can be ordered from
Facultad de Ciencias Económicas y Empresariales. Pabellón prefabricado, 1ª Planta, ala norte. Campus de Somosaguas, 28223 - POZUELO DE ALARCÓN (MADRID)
https://www.ucm.es/f ... -de-trabajo-del-icae
Access Statistics for this paper
More papers in Documentos de Trabajo del ICAE from Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico Contact information at EDIRC.
Bibliographic data for series maintained by Águeda González Abad ().