Big data is decision science: The case of COVID-19 vaccination
Jacques Bughin,
Michele Cincera,
Dorota Reykowska and
Rafal Ohme
ULB Institutional Repository from ULB -- Universite Libre de Bruxelles
Abstract:
Data science has been proven to be an important asset to support better decision making in a variety of settings, whether it is for a scientist to better predict climate change for a company to better predict sales or for a government to anticipate voting preferences. In this research, the authors leverage random forest (RF) as one of the most effective machine learning techniques using big data to predict vaccine intent in five European countries. The findings support the idea that outside of vaccine features, building adequate perception of the risk of contamination, and securing institutional and peer trust are key nudges to convert skeptics to get vaccinated against COVID-19. What machine learning techniques further add beyond traditional regression techniques is some extra granularity in factors affecting vaccine preferences (twice more factors than logistic regression). Other factors that emerge as predictors of vaccine intent are compliance appetite with non-pharmaceutical protective measures as well as perception of the crisis duration.
Date: 2021-06
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: Big Data is Decision Science: the Case of Covid-19 Vaccination (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ulb:ulbeco:2013/342494
Ordering information: This working paper can be ordered from
http://hdl.handle.ne ... lb.ac.be:2013/342494
Access Statistics for this paper
More papers in ULB Institutional Repository from ULB -- Universite Libre de Bruxelles Contact information at EDIRC.
Bibliographic data for series maintained by Benoit Pauwels ().