Economics at your fingertips  

Identification of Mixed Causal-Noncausal Models: How Fat Should We Go?

Alain Hecq (), Lenard Lieb () and Sean Telg ()

No 35, Research Memorandum from Maastricht University, Graduate School of Business and Economics (GSBE)

Abstract: Gouriéroux and Zakoian (2013) propose to use noncausal models to parsimoniously capture nonlinear features observed in financial time series and in particular bubble phenomena. In order to distinguish causal autoregressive processes from purely noncausal or mixed causal-noncausal ones, one has to depart from the Gaussianity assumption on the error distribution. This paper investigates by means of simulation how fat the tails of the distribution of the error process have to be such that those models can be identified in practice. We compare the performance of the MLE, assuming a t-distribution, with those of the LAD estimator that we propose in this paper. Similar to Davis, Knight and Liu (1992) we find that for infinite variance autoregressive processes both the MLE and LAD estimator converge faster. We further specify the general asymptotic normality results obtained in Andrews, Breidt and Davis (2006) for the case of t-distributed and Laplacian distributed error terms. We first illustrate our analysis by estimating mixed causal-noncausal autoregressions to model the demand for solar panels in Belgium over the last decade. Then we look at the presence of potential noncausal components in daily realized volatility series for 21 equity indexes. The presence of a noncausal component is confirmed in both empirical illustrations.

Date: 2015-01-01
New Economics Papers: this item is included in nep-ecm, nep-ore and nep-pke
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link) ... 950c7fc-ASSET1.0.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.26481/umagsb.2015035

Access Statistics for this paper

More papers in Research Memorandum from Maastricht University, Graduate School of Business and Economics (GSBE) Contact information at EDIRC.
Bibliographic data for series maintained by Leonne Portz ().

Page updated 2020-09-21
Handle: RePEc:unm:umagsb:2015035