Learning and the structure of citation networks
François Lafond
No 2012-071, MERIT Working Papers from United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT)
Abstract:
The distribution of citations received by scientific publications can be approximated by a power law, a finding that has been explained by “cumulative advantage”. This paper argues that socially embedded learning is a plausible mechanism behind this cumulative advantage. A model assuming that scientists face a time trade-off between learning and writing papers, that they learn the papers known by their peers, and that they cite papers they know, generates a power law distribution of popularity, and a shifted power law for the distribution of citations received. The two distributions flatten if there is relatively more learning. The predicted exponent for the distribution of citations is independent of the average in-(or out-) degree, contrary to an untested prediction of the reference model (Price, 1976). Using publicly available citation networks, an estimate of the share of time devoted to learning (against producing) is given around two thirds.
Keywords: shifted power law; scale free networks; two-mode networks; cumulative advantage; polynomial attachment kernel; innovation; diffusion. (search for similar items in EconPapers)
JEL-codes: D83 D85 O31 O33 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://unu-merit.nl/publications/wppdf/2012/wp2012-071.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:unm:unumer:2012071
Access Statistics for this paper
More papers in MERIT Working Papers from United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT) Contact information at EDIRC.
Bibliographic data for series maintained by Ad Notten ( this e-mail address is bad, please contact ).