Multi-battle contests over complementary battlefields
Daniel Stephenson ()
Additional contact information
Daniel Stephenson: Department of Economics, VCU School of Business
No 2303, Working Papers from VCU School of Business, Department of Economics
Abstract:
This paper studies Blotto contests with divisible complementary prizes. Each agent distributes a fixed budget over multiple battlefields. Each battlefield has a single prize which is divided among the competi- tors in proportion to a power function of the corresponding investment levels. Prizes exhibit constant sub-unitary elasticity of substitution. Such contests are shown to have pure strategy Nash equilibria under arbitrarily sensitive battlefield success functions. In contrast, conven- tional Blotto and Tullock contests have no pure strategy Nash equi- libria under sufficiently sensitive battlefield success functions. These results suggest that divisible complementary prizes can help stabilize the distribution of resources in strategic conflicts.
JEL-codes: C62 C70 D74 Q34 (search for similar items in EconPapers)
Pages: 20 pages
Date: 2023-01
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://danielgstephenson.com/items/ComplementaryBattlefieldsTheory.pdf First version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vcu:wpaper:2303
Access Statistics for this paper
More papers in Working Papers from VCU School of Business, Department of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Oleg Korenok ().