EconPapers    
Economics at your fingertips  
 

The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey

Dinghai Xu

No 904, Working Papers from University of Waterloo, Department of Economics

Abstract: This paper provides a selected review of the recent developments and applications of mixtures of normal (MN) distribution models in empirical finance. Once attractive property of the MN model is that it is flexible enough to accommodate various shapes of continuous distributions, and able to capture leptokurtic, skewed and multimodal characteristics of financial time series data. In addition, the MN-based analysis fits well with the related regime-switching literature. The survey is conducted under two broad themes: (1) minimum-distance estimation methods, and (2) financial modeling and its applications.

Keywords: Mixtures of Normal; Maximum Likelihood; Moment Generating Function; Characteristic Function; Switching Regression Model; (G) ARCH Model; Stochastic Volatility Model; Autoregressive Conditional Duration Model; Stochastic Duration Model; Value at Risk. (search for similar items in EconPapers)
JEL-codes: C01 C13 (search for similar items in EconPapers)
Pages: 35 pages
Date: 2009-09, Revised 2009-09
New Economics Papers: this item is included in nep-cfn, nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://economics.uwaterloo.ca/documents/mn-review-paper-CES.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 403 Forbidden

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wat:wpaper:0904

Access Statistics for this paper

More papers in Working Papers from University of Waterloo, Department of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sherri Anne Arsenault ().

 
Page updated 2020-11-26
Handle: RePEc:wat:wpaper:0904