EconPapers    
Economics at your fingertips  
 

Comparative Analysis of AI-Predicted and Crowdsourced Food Prices in an Economically Volatile Region

Julius Babatunde Adewopo, Bo Pieter Johannes Andree, Helen Peter, Gloria Solano-Hermosilla and Fabio Micale

No 10758, Policy Research Working Paper Series from The World Bank

Abstract: High-frequency monitoring of food commodity prices is important for assessing and responding to shocks, especially in fragile contexts where timely and targeted interventions for food security are critical. However, national price surveys are typically limited in temporal and spatial granularity. It is cost prohibitive to implement traditional data collection at frequent timescales to unravel spatiotemporal price evolution across market segments and at subnational geographic levels. Recent advancements in data innovation offer promising solutions to address the paucity of commodity price data and guide market intelligence for diverse development stakeholders. The use of artificial intelligence to estimate missing price data and a parallel effort to crowdsource commodity price data are both unlocking cost-effective opportunities to generate actionable price data. Yet, little is known about how the data from these alternative methods relate to independent ground truth data. To evaluate if these data strategies can meet the long-standing demand for real-time intelligence on food affordability, this paper analyzes open-source daily crowdsourced data (104,931 datapoints) from a recently published data set in Nature Journal, relative to complementary ground truth sample. The paper subsequently compares these data to open-source monthly artificial intelligence–generated price data for identical commodities over a 36-month period in northern Nigeria, from 2019 to 2022. The results show that all the data sources share a high degree of comparability, with variation across commodity and market segments. Overall, the findings provide important support for leveraging these new and innovative data approaches to enable data-driven decision-making in near real time.

Date: 2024-04-23
New Economics Papers: this item is included in nep-agr, nep-ain and nep-inv
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://documents.worldbank.org/curated/en/09943000 ... c101b25f11061d21.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wbk:wbrwps:10758

Access Statistics for this paper

More papers in Policy Research Working Paper Series from The World Bank 1818 H Street, N.W., Washington, DC 20433. Contact information at EDIRC.
Bibliographic data for series maintained by Roula I. Yazigi ().

 
Page updated 2025-03-29
Handle: RePEc:wbk:wbrwps:10758