What can we (machine) learn about welfare dynamics from cross-sectional data?
Leonardo Ramiro Lucchetti
No 8545, Policy Research Working Paper Series from The World Bank
Abstract:
This paper implements a machine learning approach to estimate intra-generational economic mobility using cross-sectional data. A Least Absolute Shrinkage and Selection Operator (Lasso) procedure is applied to explore poverty dynamics and household-level welfare growth in the absence of panel data sets that follow individuals over time. The method is validated by sampling repeated cross-sections of actual panel data from Peru. In general, the approach performs well at estimating intra-generational poverty transitions; most of the mobility estimates fall within the 95 percent confidence intervals of poverty mobility from the actual panel data. The validation also confirms that the Lasso regularization procedure performs well at estimating household-level welfare growth between two years. Overall, the results are sufficiently encouraging to estimate economic mobility in settings where panel data are not available or, if they are, to improve panel data when they suffer from serious non-random attrition problems.
Date: 2018-08-08
References: Add references at CitEc
Citations:
Downloads: (external link)
http://documents.worldbank.org/curated/en/949841533741579213/pdf/WPS8545.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wbk:wbrwps:8545
Access Statistics for this paper
More papers in Policy Research Working Paper Series from The World Bank 1818 H Street, N.W., Washington, DC 20433. Contact information at EDIRC.
Bibliographic data for series maintained by Roula I. Yazigi ().