Economics at your fingertips  

A New Scoring Algorithm for Multiple-Choice Tests: Conditional Knowledge Model

Alexander Strashny

Econometrics from EconWPA

Abstract: This paper uses basic rules of probability to develop a new scoring method. The method accounts for guessing, partial knowledge, and misinformation; it also differentiates between incorrect responses and omits. Aside from multiple-choice tests, the method can be used to score short-answer tests. Test scores and confidence intervals are found using simple formulas. Accounting for omits increases test score in almost all cases. Students who guess on questions that they should have omitted are almost always penalized. A counterintuitive finding of this paper is that tests with two answers per question are better able to differentiate between students than tests with higher number of answers per question. In the course of the paper, two new probability density functions are constructed. Their expected values and variances are given.

Keywords: grading; education measurement; multiple-choice (search for similar items in EconPapers)
JEL-codes: C0 (search for similar items in EconPapers)
Date: 2002-08-28
Note: Type of Document - pdf; prepared on PC; to print on any;
References: View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Econometrics from EconWPA
Series data maintained by EconWPA ().

Page updated 2017-09-29
Handle: RePEc:wpa:wuwpem:0207003