EconPapers    
Economics at your fingertips  
 

Modeling and Forecasting Volatility of the Malaysian and the Singaporean stock indices using Asymmetric GARCH models and Non-normal Densities

Ahmed Shamiri () and Abu Hassan
Additional contact information
Abu Hassan: University Kebangsaan Malaysia

Econometrics from EconWPA

Abstract: This paper examines and estimate the three GARCH(1,1) models (GARCH, EGARCH and GJR-GARCH) using the daily price data. Two Asian stock indices KLCI and STI are studied using daily data over a 14-years period. The competing Models include GARCH, EGARCH and GJR-GARCH used with three different distributions, Gaussian normal, Student-t, Generalized Error Distribution. The estimation results show that the forecasting performance of asymmetric GARCH Models (GJR-GARCH and EGARCH), especially when fat-tailed asymmetric densities are taken into account in the conditional volatility, is better than symmetric GARCH. Moreover, its found that the AR(1)-GJR model provide the best out-of- sample forecast for the Malaysian stock market, while AR(1)-EGARCH provide a better estimation for the Singaporean stock market.

Keywords: ARCH-Models; Asymmetry; Stock market indices and volatility modeling; SAS/ETS software. (search for similar items in EconPapers)
JEL-codes: C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-fin, nep-fmk and nep-for
Date: 2005-09-08
Note: Type of Document - pdf; pages: 25
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://econwpa.repec.org/eps/em/papers/0509/0509015.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wpa:wuwpem:0509015

Access Statistics for this paper

More papers in Econometrics from EconWPA
Series data maintained by EconWPA ().

 
Page updated 2017-10-30
Handle: RePEc:wpa:wuwpem:0509015