Predicting fixed effects in panel probit models
Johannes Kunz,
Kevin Staub and
Rainer Winkelmann
Health, Econometrics and Data Group (HEDG) Working Papers from HEDG, c/o Department of Economics, University of York
Abstract:
We present a method to estimate and predict fixed effects in a panel probit model when N is large and T is small, and when there is a high proportion of individual units without variation in the binary response. Our approach builds on a bias-reduction method originally developed by Kosmidis and Firth (2009) for cross-section data. In contrast to other estimators, our approach ensures that predicted fixed effects are finite in all cases. Results from a simulation study document favorable properties in terms of bias and mean squared error. The estimator is applied to predict period-specific fixed effects for the extensive margin of health care utilization (any visit to a doctor during the previous three months), using German data for 2000-2014. We find a negative correlation between fixed effects and observed characteristics. Although there is some within-individual variation in fixed effects over sub-periods, the between-variation is four times as large.
Keywords: Perfect prediction; Bias reduction; modified score function (search for similar items in EconPapers)
JEL-codes: C23 C25 I11 I18 (search for similar items in EconPapers)
Date: 2018-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/1823.pdf Main text (application/pdf)
Related works:
Working Paper: Predicting fixed effects in panel probit models (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:yor:hectdg:18/23
Access Statistics for this paper
More papers in Health, Econometrics and Data Group (HEDG) Working Papers from HEDG, c/o Department of Economics, University of York HEDG/HERC, Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom. Contact information at EDIRC.
Bibliographic data for series maintained by Jane Rawlings ().