EconPapers    
Economics at your fingertips  
 

Data Augmentation in Limited-Dependent Variable Models

Roberto Leon-Gonzalez

Discussion Papers from Department of Economics, University of York

Abstract: This paper proposes a scheme that speeds up the convergence of Markov Chain Monte Carlo (MCMC) algorithms in the context of limited-dependent variable models. The algorithm reduces autocorrelations more than the recently proposed Parameter Expansion Data Augumentation (PX-DA) algorithm. In addition, the paper provides an algorithm to sample a variance-covariance matrix with restrictions directly from the conditional posterior distribution. Finally, it is shown that the PX-DA algorithm, as applied to the multivariate probit model, can be seen as sampling from a different parameterization of the model. However, in some cases the PX-DA algorithm is not invariant to reparameterizations, and a slightly different algorithm is proposed.

Keywords: data augmentation; parameter-expansion-data-augmentation; inverted wishart; multivariate probit; reparameterization. (search for similar items in EconPapers)
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.york.ac.uk/media/economics/documents/discussionpapers/2002/0209.pdf Main text (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:yor:yorken:02/09

Access Statistics for this paper

More papers in Discussion Papers from Department of Economics, University of York Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom. Contact information at EDIRC.
Bibliographic data for series maintained by Paul Hodgson ().

 
Page updated 2025-04-02
Handle: RePEc:yor:yorken:02/09