EconPapers    
Economics at your fingertips  
 

Bayesian VARs and prior calibration in times of COVID-19

Benny Hartwig

No 52/2022, Discussion Papers from Deutsche Bundesbank

Abstract: This paper investigates the ability of several generalized Bayesian vector autoregressions to cope with the extreme COVID-19 observations and discusses their impact on prior calibration for inference and forecasting purposes. It shows that the preferred model interprets the pandemic episode as a rare event rather than a persistent increase in macroeconomic volatility. For forecasting, the choice among outlier-robust error structures is less important, however, when a large cross-section of information is used. Besides the error structure, this paper shows that the standard Minnesota prior calibration is an important source of changing macroeconomic transmission channels during the pandemic, altering the predictability of real and nominal variables. To alleviate this sensitivity, an outlier-robust prior calibration is proposed.

Keywords: forecasting; multivariate t errors; common time-varying volatility; outlier-robust prior calibration (search for similar items in EconPapers)
JEL-codes: C11 C51 C53 (search for similar items in EconPapers)
Date: 2022
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/268252/1/1830347187.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:bubdps:522022

Access Statistics for this paper

More papers in Discussion Papers from Deutsche Bundesbank Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:bubdps:522022