Finite Sample Properties of One-step, Two-step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation
Joachim Inkmann ()
No 00/03, CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE)
Abstract:
This paper compares conventional GMM estimators to empirical likelihood based GMM estimators which employ a semiparametric efficient estimate of the unknown distribution function of the data. One-step, two-step and bootstrap empirical likelihood and conventional GMM estimators are considered which are efficient for a given set of moment conditions. The estimators are subject to a Monte Carlo investigation using a specification which exploits sequential conditional moment restrictions for binary panel data with multipli-cative latent effects. Among other findings the experiments show that the one-step and two-step estimators yield coverage rates of confidence intervals below their nominal coverage probabilities. The bootstrap methods improve upon this result.
JEL-codes: C33 C35 (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/85168/1/dp00-03.pdf (application/pdf)
Related works:
Working Paper: Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation (2000) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:cofedp:0003
Access Statistics for this paper
More papers in CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().