EconPapers    
Economics at your fingertips  
 

Kernel Dependent Functions in Nonparametric Regression with Fractional Time Series Errors

Yuanhua Feng

No 03/02, CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE)

Abstract: This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (delta) in the asymptotic variance and finding closed form formula of it, where delta is the long-memory parameter. - General solution of V (delta) for polynomial kernels is given together with a few examples. It is also found, e.g. that the Uniform kernel is no longer the minimum variance one by strongly antipersistent errors and that, for a fourth order kernel, V (delta) at some delta > 0 is clearly smaller than R(K). The results are used to develop a general data-driven algorithm. Data examples illustrate the practical relevance of the approach and the performance of the algorithm

Keywords: Nonparametric regression; long memory; antipersistence; fractional difference; kernel dependent function; bandwidth selection (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/23554/1/dp03_02.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:cofedp:0302

Access Statistics for this paper

More papers in CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-22
Handle: RePEc:zbw:cofedp:0302