SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity
Jan Beran
No 99/16, CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE)
Abstract:
Time series in many areas of application often display local or global trends. Typical models that provide statistical explanations of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for instance, integrated ARIMA processes. In addition, there is a fast growing literature on stationary processes with long memory which generate spurious local trends. Visual distinction between large variety of possible models, and in particular between deterministic, stochastic and spurious trends, can be very difficult. Also, for some time series, several trend generating mechanisms may occur simulteneously. In this paper, a class of semiparametric fractional autoregressive models (SEMIFAR) is proposed that includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence. Parameters characterizing stochastic dependence and stochastic trends, including a fractional and an integer differencing parameter, can be estimated by maximum likelihood. deterministic trends are estimated by kernel smoothing. In combination with automatic model an bandwidth selection, the proposed method allows for flexible modelling of time series and helps the data analyst to decide whether the observed process contains a stationary short- or long-memory component, adifference stationary component, and/or a deterministic trend component. Data examples from various fields of application illustrate the method. Finite sample behaviour is sudied in a small simulation study.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/85181/1/dp99-16.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:cofedp:9916
Access Statistics for this paper
More papers in CoFE Discussion Papers from University of Konstanz, Center of Finance and Econometrics (CoFE) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().