A comparison of different wind power forecasting models to the Mycielski approach
Carsten Croonenbroeck and
Daniel Ambach
No 355, Discussion Papers from European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics
Abstract:
In the wind power industry, wind speed forecasts are obtained and transformed into wind power forecasts. The Mycielski algorithm has proven to be an accurate predictor for wind speed in short-term scenarios. Moreover, Mycielski has the capability of forecasting wind power directly, instead of wind speed. This article compares wind power forecasts calculated by the Mycielski algorithm to state-of-the-art forecasters. As such, we use the Wind Power Prediction Tool (WPPT) and the recently developed generalization of it, GWPPT (Generalized WPPT). Furthermore, we evaluate statistical time series models such as autoregressive and vector autoregressive models. As an additional benchmark we use the persistence model, which is often used to assess forecasting accuracy. Each model is evaluated and we give a recommendation for the best forecasting model.
Keywords: Mycielski algorithm; WPPT; GWPPT; Wind Power; Wind Energy; Forecasting; Prediction (search for similar items in EconPapers)
JEL-codes: C35 E27 Q47 (search for similar items in EconPapers)
Date: 2014
New Economics Papers: this item is included in nep-for and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/98735/1/789540274.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:euvwdp:355
Access Statistics for this paper
More papers in Discussion Papers from European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().