EconPapers    
Economics at your fingertips  
 

Obtaining superior wind power predictions from a periodic and heteroscedastic Wind Power Prediction Tool

Daniel Ambach and Carsten Croonenbroeck

No 361, Discussion Papers from European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics

Abstract: The Wind Power Prediction Tool (WPPT) has successfully been used for accurate wind power forecasts in the short to medium term scenario (up to 12 hours ahead). Since its development about a decade ago, a lot of additional stochastic modeling has been applied to the interdependency of wind power and wind speed. We improve the model in three ways: First, we replace the rather simple Fourier series of the basic model by more general and flexible periodic Basis splines (Bsplines). Second, we model conditional heteroscedasticity by a threshold-GARCH (TGARCH) model, one aspect that is entirely left out by the underlying model. Third, we evaluate several distributional forms of the model's error term. While the original WPPT assumes gaussian errors only, we also investigate whether the errors may follow a Student's t-distribution as well as a skew t-distribution. In this article we show that our periodic WPPT-CH model is able to improve forecasts' accuracy significantly, when compared to the plain WPPT model.

Date: 2014
New Economics Papers: this item is included in nep-ene and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/103421/1/797798323.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:euvwdp:361

Access Statistics for this paper

More papers in Discussion Papers from European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2023-11-08
Handle: RePEc:zbw:euvwdp:361