Skew generalized secant hyperbolic distributions: unconditional and conditional fit to asset returns
Matthias J. Fischer
No 46/2002, Discussion Papers from Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics
Abstract:
A generalization of the hyperbolic secant distribution which allows both for skewness and for leptokurtosis was given by Morris (1982). Recently, Vaughan (2002) proposed another flexible generalization of the hyperbolic secant distribution which has a lot of nice properties but is not able to allow for skewness. For this reason, Fischer and Vaughan (2002) additionally introduced a skewness parameter by means of splitting the scale parameter and showed that most of the nice properties are preserved. We briefly review both classes of distributions and apply them to financial return data. By means of the Nikkei225 data, it will be shown that this class of distributions - the socalled skew generalized secant hyperbolic distribution - provides an excellent fit in the context of unconditional and conditional return models.
Keywords: SGSH distribution; NEF-GHS distribution; skewness; GARCH; APARCH (search for similar items in EconPapers)
JEL-codes: C22 G12 (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/29601/1/614040868.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:faucse:462002
Access Statistics for this paper
More papers in Discussion Papers from Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().