Generalized Tukey-type distributions with application to financial and teletraffic data
Matthias J. Fischer
No 72/2006, Discussion Papers from Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics
Abstract:
Constructing skew and heavy-tailed distributions by transforming a standard normal variable goes back to Tukey (1977) and was extended and formalized by Hoaglin (1983) and Martinez & Iglewicz (1984). Applications of Tukey's GH distribution family - which are composed by a skewness transformation G and a kurtosis transformation H - can be found, for instance, in financial, environmental or medical statistics. Recently, alternative transformations emerged in the literature. Rayner & MacGillivray (2002b) discuss the GK distributions, where Tukey's H-transformation is replaced by another kurtosis transformation K. Similarly, Fischer & Klein (2004) advocate the J-transformation which also produces heavy tails but - in contrast to Tukey's H-transformation - still guarantees the existence of all moments. Within this work we present a very general kurtosis transformation which nests H-, K- and J-transformation and, hence, permits to discriminate between them. Applications to financial and teletraffic data are given.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/29593/1/614054206.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:faucse:722006
Access Statistics for this paper
More papers in Discussion Papers from Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().