Some critical remarks on Zhang's gamma test for independence
Ingo Klein and
Fabian Tinkl
No 87/2010, Discussion Papers from Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics
Abstract:
Zhang (2008) defines the quotient correlation coefficient to test for dependence and tail dependence of bivariate random samples. He shows that asymptotically the test statistics are gamma distributed. Therefore, he called the corresponding test gamma test. We want to investigate the speed of convergence by a simulation study. Zhang discusses a rank-based version of this gamma test that depends on random numbers drawn from a standard Frechet distribution. We propose an alternative that does not depend on random numbers. We compare the size and the power of this alternative with the well-known t-test, the van der Waerden and the Spearman rank test. Zhang proposes his gamma test also for situations where the dependence is neither strictly increasing nor strictly decreasing. In contrast to this, we show that the quotient correlation coefficient can only measure monotone patterns of dependence.
Keywords: test on dependence; rank correlation test; Spearman's p; copula; Lehmann ordering (search for similar items in EconPapers)
Date: 2011
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/52385/1/67198148X.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:faucse:872010
Access Statistics for this paper
More papers in Discussion Papers from Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().