Price Management in the Used-Car Market: An Evaluation of Survival Analysis
Alexander Born,
Nikoleta Kovachka,
Stefan Lessmann and
Hsin-Vonn Seow
No 2018-065, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Abstract:
Second-hand car markets contribute to billions of Euro turnover each year but hardly generate profit for used car dealers. The paper examines the potential of sophisticated data-driven pricing systems to enhance supplier-side decision making and escape the zero-profit-trap. Profit maximization requires an accurate understanding of demand. The paper identifies factors that characterize consumer demand and proposes a framework to estimate demand functions using survival analysis. Empirical analysis of a large data set of daily used car sales between 2008 to 2012 confirm the merit of the new factors. Observed results also show the value of survival analysis to explain and predict demand. Random survival forest emerges as the most suitable vehicle to develop price response functions as input for a dynamic pricing system.
Keywords: Automotive Industry; Price Optimization; Survival Analysis; Dynamic Pricing (search for similar items in EconPapers)
JEL-codes: C00 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230775/1/irtg1792dp2018-065.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2018065
Access Statistics for this paper
More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().