Estimating low sampling frequency risk measure by high-frequency data
Niels Wesselhöfft and
Wolfgang Härdle
No 2019-003, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Abstract:
Weekly, quarterly and yearly risk measures are crucial for risk reporting according to Basel III and Solvency II. For the respective data frequencies, the authors show in a simulation and backtest study that available data series are not sufficient in order to estimate Value at Risk and Expected Shortfall sufficiently, given confidence levels of 99.9% and 99.99%. Accordingly, this paper presents a semi-parametric estimation method, rescaling data from high- to low-frequency which allows to obtain significantly more data points for the estimation of the respective risk measures. The presented methodology in the α-stable framework, which is able to mimic multifractal behavior in asset returns, provides tail events which never occurred in the original low-frequency dataset.
Keywords: high-frequency; multifractal; stable distribution; rescaling; risk management; Value at Risk; quantile distribution (search for similar items in EconPapers)
JEL-codes: C14 C22 C46 C53 G32 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230779/1/irtg1792dp2019-003.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2019003
Access Statistics for this paper
More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().