EconPapers    
Economics at your fingertips  
 

Forecasting in Blockchain-based Local Energy Markets

Michael Kostmann and Wolfgang Härdle

No 2019-014, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Abstract: Increasingly volatile and distributed energy production challenge traditional mechanisms to manage grid loads and price energy. Local energy markets (LEMs) may be a response to those challenges as they can balance energy production and consumption locally and may lower energy costs for consumers. Blockchain-based LEMs provide a decentralized market to local energy consumer and prosumers. They implement a market mechanism in the form of a smart contract without the need for a central authority coordinating the market. Recently proposed blockchain- based LEMs use auction designs to match future demand and supply. Thus, such blockchain-based LEMs rely on accurate short-term forecasts of individual households’ energy consumption and production. Often, such accurate forecasts are simply assumed to be given. The present research tests this assumption. First, by evaluating the forecast accuracy achievable with state-of-the-art energy forecasting techniques for individual households and, second, by assessing the effect of prediction errors on market outcomes in three different supply scenarios. The evaluation shows that, although a LASSO regression model is capable of achieving reasonably low forecasting errors, the costly settlement of prediction errors can offset and even surpass the savings brought to consumers by a blockchain-based LEM. This shows, that due to prediction errors, participation in LEMs may be uneconomical for consumers, and thus, has to be taken into consideration for pricing mechanisms in blockchain-based LEMs.

Keywords: Blockchain; Local Energy Market; Smart Contract; Machine Learning; Household; Energy Prediction; Prediction Errors; Market Mechanism (search for similar items in EconPapers)
JEL-codes: C53 D44 D47 Q47 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230790/1/irtg1792dp2019-014.pdf (application/pdf)

Related works:
Journal Article: Forecasting in Blockchain-Based Local Energy Markets (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2019014

Access Statistics for this paper

More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-31
Handle: RePEc:zbw:irtgdp:2019014