What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble
Cathy Yi-Hsuan Chen,
Roméo Després,
Li Guo and
Thomas Renault
No 2019-016, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Abstract:
The 2017 bubble on the cryptocurrency market recalls our memory in the dot-com bubble, during which hard-to-measure fundamentals and investors’ illusion for brand new technologies led to overvalued prices. Benefiting from the massive increase in the volume of messages published on social media and message boards, we examine the impact of investor sentiment, conditional on bubble regimes, on cryptocurrencies aggregate return prediction. Constructing a crypto-specific lexicon and using a local-momentum autoregression model, we find that the sentiment effect is prolonged and sustained during the bubble while it turns out a reversal effect once the bubble collapsed. The out-of-sample analysis along with portfolio analysis is conducted in this study. When measuring investor sentiment for a new type of asset such as cryptocurrencies, we highlight that the impact of investor sentiment on cryptocurrency returns is conditional on bubble regimes.
Keywords: Cryptocurrency; Sentiment; Bubble; Return Predictability (search for similar items in EconPapers)
JEL-codes: G02 G10 G12 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230792/1/irtg1792dp2019-016.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2019016
Access Statistics for this paper
More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().