EconPapers    
Economics at your fingertips  
 

FRM Financial Risk Meter

Andrija Mihoci, Michael Althof (), Cathy Yi-Hsuan Chen and Wolfgang Härdle

No 2019-021, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Abstract: A daily systemic risk measure is proposed accounting for links and mutual dependencies between financial institutions utilising tail event information. FRM (Financial Risk Meter) is based on Lasso quantile regression designed to capture tail event co-movements. The FRM focus lies on understanding active set data characteristics and the presentation of interdependencies in a network topology. Two FRM indices are presented, namely, FRM@Americas and FRM@Europe. The FRM indices detect systemic risk at selected areas and identifies risk factors. In practice, FRM is applied to the return time series of selected financial institutions and macroeconomic risk factors. Using FRM on a daily basis, we identify companies exhibiting extreme "co-stress", as well as "activators" of stress. With the SRM@EuroArea, we extend to the government bond asset class. FRM is a good predictor for recession probabilities, constituting the FRM-implied recession probabilities. Thereby, FRM indicates tail event behaviour in a network of financial risk factors.

Keywords: Systemic Risk; Quantile Regression; Financial Markets; Risk Management; Network Dynamics; Recession (search for similar items in EconPapers)
JEL-codes: C00 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230797/1/irtg1792dp2019-021.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2019021

Access Statistics for this paper

More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-31
Handle: RePEc:zbw:irtgdp:2019021