Group Average Treatment Effects for Observational Studies
Daniel Jacob,
Wolfgang Härdle and
Stefan Lessmann
No 2019-028, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Abstract:
The paper proposes an estimator to make inference of heterogeneous treatment effects sorted by impact groups (GATES) for non-randomised experiments. Observational studies are standard in policy evaluation from labour markets, educational surveys and other empirical studies. To control for a potential selection-bias we implement a doubly-robust estimator in the first stage. Keeping the flexibility, we can use any machine learning method to learn the conditional mean functions as well as the propensity score. We also use machine learning methods to learn a function for the conditional average treatment effect. The group average treatment effect, is then estimated via a parametric linear model to provide p-values and confidence intervals. To control for confounding in the linear model we use Neyman-orthogonal moments to partial out the effect that covariates have on both, the treatment assignment and the outcome. The result is a best linear predictor for effect heterogeneity based on impact groups. We introduce inclusion-probability weighting as a form of cross-splitting and averaging for each observation to avoid biases through sample splitting. The advantage of the proposed method is a robust linear estimation of heterogeneous group treatment effects in observational studies.
Keywords: causal inference; machine learning; simulation study; confidence intervals; multiple splitting; sorted group ATE (GATES); doubly-robust estimator (search for similar items in EconPapers)
JEL-codes: C01 C14 C31 C63 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230804/1/irtg1792dp2019-028.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2019028
Access Statistics for this paper
More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().