On adaptive estimation in partial linear models
Georgi Golubev and
Wolfgang Härdle
No 1997,100, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Abstract:
The problem of estimation of the finite dimensional parameter in a partial linear model is considered. We derive upper and lower bounds for the second minimax order risk and show that the second order minimax estimator is a penalized maximum likelihood estimator. It is well known that the performance of the estimator is depending on the choice of a smoothing parameter. We propose a practically feasible adaptive procedure for the penalization choice.
Keywords: second order minimax risk; Adaptive estimation; penalized likelihood (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/66264/1/729738442.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:1997100
Access Statistics for this paper
More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().