On robustness of model-based bootstrap schemes in nonparametric time series analysis
Michael H. Neumann
No 1997,88, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Abstract:
Theory in time series analysis is often developed in the context of finite-dimensional models for the data generating process. Whereas corresponding estimators such as those of a conditional mean function are reasonable even if the true dependence mechanism is of a more complex structure, it is usually necessary to capture the whole dependence structure asymptotically for the bootstrap to be valid. However, certain model-based bootstrap methods remain valid for some interesting quantities arising in nonparametric statistics. We generalize the well-known whitening by windowing principle to joint distributions of nonparametric estimators of the autoregression function. As a consequence, we obtain that model-based nonparametric bootstrap schemes remain valid for supremum-type functionals as long as they mimic the corresponding finite-dimensional joint distributions consistently. As an example, we investigate a finite order Markov chain bootstrap in the context of a general stationary process.
Keywords: Bootstrap; nonparametric autoregression; nonparametric regression; strong approximation; weak dependence; whitening by windowing (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/66304/1/729603865.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:199788
Access Statistics for this paper
More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().