EconPapers    
Economics at your fingertips  
 

Nonparametric estimation in null recurrent times series

Hans Arnfinn Karlsen and Dag Tjostheim

No 1998,50, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Abstract: We develop a nonparametric estimation theory in a non-stationary environment, more precisely in the framework of null recurrent Markov chains. An essential tool is the split chain, which makes it possible to decompose the times series under consideration in independent and identical parts. A tail condition on the distribution of the recurrence time is introduced. This condition makes it possible to prove weak convergence results for series of functions of the process depending on a smoothing parameter. These limit results are subsequently used to obtain consistency and asymptotic normality for local density estimators and for estimators of the conditional mean and the conditional variance. In contra-distinction to the parametric case, the convergence rate is slower than in the stationary case, and it is directly linked to the tail behaviour of the recurrence time.

Keywords: null recurrent Markov chain; nonparametric kernel estimators; Nonstationary time series models; split chain (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/61254/1/721979866.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:199850

Access Statistics for this paper

More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb373:199850