# On estimation of monotone and concave frontier functions

*Irène Gijbels*,
*Enno Mammen*,
*Byeong U. Park* and
*Leopold Simar* ()

No 1998,9, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

**Abstract:**
When analyzing the productivity of firms, one may want to compare how the firms transform a set of inputs x (typically labor, energy or capital) into an output y (typically a quantity of goods produced). The economic efficiency of a firm is then defined in terms of its ability of operating close to or on the production frontier which is the boundary of the production set. The frontier function gives the maximal level of output attainable by a firm for a given combination of its inputs. The efficiency of a firm may then be estimated via the distance between the attained production level and the optimal level given by the frontier function. From a statistical point of view, the frontier function may be viewed as the upper boundary of the support of the population of firms density in the input and output space. It is often reasonable to assume that the production frontier is a concave monotone function. Then, a famous estimator, in the univariate input and output case, is the data envelopment analysis (DEA) estimator which is the lowest concave monotone increasing function covering all sample points. This estimator is biased downwards since it never exceeds the true production frontier. In this paper we derive the asymptotic distribution of the DEA estimator, which enables us to assess the asymptotic bias and hence to propose an improved bias corrected estimator. This bias corrected estimator involves consistent estimation of the density function as well as of the second derivative of the production frontier. We also discuss briefly the construction of asymptotic confidence intervals. The finite sample performance of the bias corrected estimator is investigated via a simulation study and the procedure is illustrated for a real data example.

**Keywords:** confidence interval; Asymptotic distribution; bias correction; data envelopment analysis; density support; frontier function (search for similar items in EconPapers)

**Date:** 1998

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** View citations in EconPapers (25) Track citations by RSS feed

**Downloads:** (external link)

https://www.econstor.eu/bitstream/10419/61227/1/721132944.pdf (application/pdf)

**Related works:**

Working Paper: On estimation of monotone and concave frontier functions (1999)

Working Paper: On estimation of monotone and concave frontier functions (1997)

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:zbw:sfb373:19989

Access Statistics for this paper

More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.

Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().