Bayes estimates in multivariate semiparametric linear models
Olaf Bunke
No 2002,58, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Abstract:
Bayes estimates are derived in multivariate linear models with unknown distribution. The prior distribution is defined using a Dirichlet prior for the unknown error distribution and a ormal-Wishart distribution for the parameters. The posterior distribution for the parameters is determined and is a mixture of normal-Wishart distributions. The posterior mean of the observation distributions is a mixture of generalized Student distributions and of kernel estimates and empirical distributions based on pseudoobservations. Explicit expressions are given in the special cases of location - scale and two-sample models. The calculation of selfinformative limits of Bayes estimates yields standard estimates.
Keywords: Dirichlet prior; Multivariate linear model; location-scale model; twosample model (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/65297/1/727024825.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:200258
Access Statistics for this paper
More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().