Empirical likelihood-based dimension reduction inference for linear error-in-responses models with validation study
Qihua Wang and
Wolfgang Härdle
No 2002,82, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Abstract:
In this paper, linear errors-in-response models are considered in the presence of validation data on the responses. A semiparametric dimension reduction technique is employed to define an estimator of Ø with asymptotic normality, the estimated empirical loglikelihoods and the adjusted empirical loglikelihoods for the vector of regression coefficients and linear combinations of the regression coefficients, respectively. The estimated empirical log-likelihoods are shown to be asymptotically distributed as weighted sums of independent Χ21 and the adjusted empirical loglikelihoods are proved to be asymptotically distributed as standard chi-squares, respectively. A simulation study is conducted to compare the proposed methods in terms of coverage accuracies and average lengths of the confidence intervals.
Keywords: confidence intervals; error-in-response; validation data (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/65329/1/727077732.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:200282
Access Statistics for this paper
More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().