Asymptotic properties of model selection procedures in linear regression
Bernd Droge
No 2003,28, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Abstract:
In regression analysis there is typically a large collection of competing models available from which we want to select an appropriate one. This paper is concerned with asymptotic properties of procedures for selecting linear models, which are based on certain data-dependent criteria such as Mallows´ Cp, cross-validation and the generalized information criterion. We avoid the assumption of an adequate ("correct") model and allow the maximal model dimension to increase with the sample size. General asymptotic concepts are introduced, covering the usual ones of consistency and asymptotic optimality. The focus is on conditions for penalizing the model complexity which are necessary to optain the different optimalities. For example, the consistency of a procedure is decided by the interplay between these penalties, the complexity of the class of model candidates, and some quantity describing the ability to identify "wrong" (pseudo-inadequate) models. Many results known from the literature appear as special cases or are slightly modified.
Keywords: Model selection; prediction; asymptotic optimality; consistency (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22243/1/dpsfb200328.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:200328
Access Statistics for this paper
More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().