Asymptotic theory for M-estimators of boundaries
Keith Knight
No 2003,37, SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Abstract:
We consider some asymptotic distribution theory for M-estimators of the parameters of a linear model whose errors are non-negative; these estimators are the solutions of constrained optimization problems and their asymptotic theory is non-standard. Under weak conditions on the distribution of the errors and on the design, we show that a large class of estimators have the same asymptotic distributions in the case of i.i.d. errors; however, this invariance does not hold under non-i.i.d. errors.
Keywords: constrained optimization; epi-convergence; linear programming estimator; M-estimator; point processes (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22252/1/dpsfb200337.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb373:200337
Access Statistics for this paper
More papers in SFB 373 Discussion Papers from Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().