Robust sliced inverse regression procedures
Ursula Gather,
Torsten Hilker and
Claudia Becker
No 1998,22, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
Sliced Inverse Regression (SIR) is a promising technique for the purpose of dimension reduction. Several properties of this relatively new method have been examined already, but little attention has been paid to robustness aspects. We show that SIR is very sensitive towards outliers in the data. Therefore a generalized estimation procedure which allows for robustness properties, especially for a high breakdown point, is proposed.
Keywords: Dimension reduction; Outliers; High breakdown procedures (search for similar items in EconPapers)
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77188/2/1998-22.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199822
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().