S-estimators in the linear regression model with long-memory error terms
Philipp Sibbertsen
No 1998,33, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
We investigate the behaviour of S - estimators in the linear regression model, when the error terms are long-memory Gaussian processes. It turns out that under mild regularity conditions S - estimators are still normally distributed with a similar variance - covariance structure as in the i.i.d - case. This assertion holds for the parameter estimates as well as for the scale estimates. Also the rate of convergence is for S - estimators the same as for the least squares estimator and for the BLUE.
Keywords: Linear regression model; long - range dependence; robustness (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77161/2/1998-33.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199833
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().