Modality, runs, strings and wavelets
P. Laurie Davies and
A. Kovac
No 1999,16, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
The paper considers the problem of non-parametric regression with emphasis on controlling the number of local extrema. Two methods, the run method and the taut string-wavelet method, are introduced and analysed on standard test beds. It is shown that the number and location of local extreme values are consistently estimated. Rates of convergence are proved for both methods. The run method has a slow rate but can withstand blocks as well as a high proportion of isolated outliers. The rate of convergence of the taut string-wavelet method is almost optimal and the method is extremely sensitive being able to detect very low power peaks. Section 1 contains a short introduction with special reference to modality. The run method is described in Section 2 and the taut string-wavelet method in Section 3. Low power peaks are considered in Section 4. Section 5 contains a short conclusion and the proofs are given in Section 6.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77267/2/1999-16.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199916
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().