EconPapers    
Economics at your fingertips  
 

Dynamic Bayesian networks for classification of business cycles

Ursula Sondhauss and Claus Weihs

No 1999,17, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We use Dynamic Bayesian networks to classify business cycle phases. We compare classifiers generated by learning the Dynamic Bayesian network structure on different sets of admissible network structures. Included are sets of network structures of the Tree Augmented Naive Bayes (TAN) classifiers of Friedman, Geiger, and Goldszmidt (1997) adapted for dynamic domains. The performance of the developed classifiers on the given data was modest.

Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77317/2/1999-17.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199917

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:199917