EconPapers    
Economics at your fingertips  
 

Multivariate classification of business phases

Claus Weihs, Michael C. Röhl and Winfried Theis

No 1999,26, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We propose multivariate classification as a statistical tool to describe business cycles. These cycles are often analyzed as a univariate phenomenon in terms of GNP or industrial net production ignoring additional information in other economic variables. Multivariate classification overcomes these limitations by reducing dimension in a way suitable for human perception. Based on a four phase scheme (upswing, upper turning point, downswing, lower turning point) we demonstrate the potential of classification methods by determining the important economic variables (stylized facts) for the German business cycle.

Keywords: Business cycle; classification; dimension reduction; simulated annealing; transition structure (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77229/2/1999-26.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199926

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:199926