EconPapers    
Economics at your fingertips  
 

Parameter estimation in enzyme-kinetics with consideration of heteroscedasticity and low dose data

Marcus Brunnert and Frank Gilberg

No 1999,49, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: In this paper we propose a simulation study in order to discuss four statistical models dealing with the problem of parameter estimation in enzyme-kinetics. The pseudo-maximumlikelihood estimators for the transform-both-sides-model and the weighted TBS-model are compared with least-square-estimators of the classical nonlinear regression model and the linearized Eadie-Hofstee-plot. Due to heteroscedasticity of enzyme-kinetic data in low dose experiments the proposed estimators are investigated.

Keywords: Nonlinear regression model; Pseudo-maximum-likelihood estimation; Heteroscedastic error variance; Michaelis-Menten-kinetic; Low dose data; Simulation study (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77130/2/1999-49.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:199949

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:199949