EconPapers    
Economics at your fingertips  
 

Online classification of states in intensive care

Ursula Gather, Roland Fried and Michael Imhoff

No 2000,15, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: In modern intensive care physiological variables of the critically ill can be reported online by clinical information systems. Intelligent alarm systems are needed for a suitable bedside decision support. The existing alarm systems based on fixed treshholds produce a great number of false alarms, as the change of a variable over time very often is more informative than one pathological value at a particular time point. What is really needed is a classification between the most important kinds of states of physiological time series. We aim at distinguishing between the occurence of outliers, level changes, or trends for a proper classification of states. As there are various approaches to modelling time-dependent data and also several methodologies for pattern detection in time series it is interesting to compare and discuss the different possibilities w.r.t. their appropriateness in the online monitoring situation. This is done here by means of a comparative case-study.

Keywords: Online monitoring; time series analysis; state classification; change point detection; ARIMA models; phase space models; dynamic linear models (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77330/2/2000-15.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200015

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200015