Spatio-temporal models on the basis of innovation processes and application to cancer mortality data
Ulrike Schach
No 2000,16, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
The aim of this paper is to find a modeling approach for spatially and temporally structured data. The spatial distribution is considered to form an irregular lattice with a specified definition of neighborhood. Additional to the spatial component, a temporal autoregressive parameter, and a time trend are modeled within a multivariates Markov process. This Markov process can be expressed on the basis of an innovation process, which allows for statistical inference on various parameters.
Keywords: Lattice data; conditional autoregressive approach; spatio-temporal linear model; innovation process; ML-estimation (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77266/2/2000-16.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200016
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().