An improved optimisation procedure for desirability indices
Detlef Steuer
No 2000,27, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
As will be shown the current use of Desirability Indices for optimisation purposes in experimental design gives biased results in general. Researchers were satisfied with approximative solutions as unbiased results would have required analytical expressions for the distributions of Desirability Indices. These expressions are unavailable. Today’s computing power allows to use Monte-Carlo estimators for estimating exact solutions instead of analytical solutions and therefore to improve the estimation process for Desirabilities.
Keywords: MCO; MCD; MCDA; Desirability Function; Desirability Index; numerical optimisation; bias; Monte-Carlo estimation; computer intensive procedures (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77256/2/2000-27.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200027
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics (econstor@zbw-workspace.eu).