EconPapers    
Economics at your fingertips  
 

Nonparametric M-estimation with long-memory errors

Jan Beran, Sucharita Ghosh and Philipp Sibbertsen

No 2000,36, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77191/2/2000-36.pdf (application/pdf)

Related works:
Working Paper: Nonparametric M-Estimation with Long-Memory Errors (2000) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200036

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-22
Handle: RePEc:zbw:sfb475:200036