Nonparametric M-estimation with long-memory errors
Jan Beran,
Sucharita Ghosh and
Philipp Sibbertsen
No 2000,36, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77191/2/2000-36.pdf (application/pdf)
Related works:
Working Paper: Nonparametric M-Estimation with Long-Memory Errors (2000) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200036
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().